dbNSFP: A Lightweight Database of Human Nonsynonymous SNPs and Their Functional Predictions

نویسندگان

  • Xiaoming Liu
  • Xueqiu Jian
  • Eric Boerwinkle
چکیده

With the advance of sequencing technologies, whole exome sequencing has increasingly been used to identify mutations that cause human diseases, especially rare Mendelian diseases. Among the analysis steps, functional prediction (of being deleterious) plays an important role in filtering or prioritizing nonsynonymous SNP (NS) for further analysis. Unfortunately, different prediction algorithms use different information and each has its own strength and weakness. It has been suggested that investigators should use predictions from multiple algorithms instead of relying on a single one. However, querying predictions from different databases/Web-servers for different algorithms is both tedious and time consuming, especially when dealing with a huge number of NSs identified by exome sequencing. To facilitate the process, we developed dbNSFP (database for nonsynonymous SNPs' functional predictions). It compiles prediction scores from four new and popular algorithms (SIFT, Polyphen2, LRT, and MutationTaster), along with a conservation score (PhyloP) and other related information, for every potential NS in the human genome (a total of 75,931,005). It is the first integrated database of functional predictions from multiple algorithms for the comprehensive collection of human NSs. dbNSFP is freely available for download at http://sites.google.com/site/jpopgen/dbNSFP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies.

Accurate deleteriousness prediction for nonsynonymous variants is crucial for distinguishing pathogenic mutations from background polymorphisms in whole exome sequencing (WES) studies. Although many deleteriousness prediction methods have been developed, their prediction results are sometimes inconsistent with each other and their relative merits are still unclear in practical applications. To ...

متن کامل

PicSNP: a browsable catalog of nonsynonymous single nucleotide polymorphisms in the human genome.

Recent progress in identification and mapping of single nucleotide polymorphisms (SNPs) in the human genome generates an unprecedented opportunity to explore cause-effect relationships between genetic variations and susceptibility to common diseases. For this purpose, one promising strategy would be to select a set of SNPs that potentially alter the function of proteins involved in the pathogen...

متن کامل

In silico analysis for determining the deleterious nonsynonymous single nucleotide polymorphisms of BRCA genes

Recent advances in DNA sequencing techniques have led to an increase in the identification of single nucleotide polymorphisms (SNPs) in BRCA1 and BRCA2 genes, but no further information regarding the deleterious probability of many of them is available (Variants of Unknown Significance/VUS). As a result, in the current study, different sequence- and structure-based computation...

متن کامل

Distribution and Effects of Nonsense Polymorphisms in Human Genes

BACKGROUND A great amount of data has been accumulated on genetic variations in the human genome, but we still do not know much about how the genetic variations affect gene function. In particular, little is known about the distribution of nonsense polymorphisms in human genes despite their drastic effects on gene products. METHODOLOGY/PRINCIPAL FINDINGS To detect polymorphisms affecting gene...

متن کامل

An In Silico Evaluation of Deleterious Nonsynonymous Single Nucleotide Polymorphisms in the ErbB3 Oncogene

ErbB3 is a significant oncogenic target that is involved in the development of numerous malignancies. In the present in silico study, we evaluated the structural and functional impact of single nucleotide polymorphisms (SNPs) on the ErbB3 gene. The nonsynonymous SNPs (nsSNPs) are known to be deleterious or disease-causing variations because they alter protein sequence, structure, and function. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011